
PdfCrypter COM interface documentation

Introduction
With PdfCrypter you can encrypt your documents to protect them against unauthorized read or
modification. There are two ways to encrypt a PDF document.
With ‚Standard Security’ you can apply password protection to a PDF document. You can assign a user
password to protect against unauthorized read and an owner password and permissions to protect against
modification.
With ‚Public Security’ you can apply certificate protection to a PDF document. For each recipient of the
document the recipient’s certificate is added to the document and each recipient can have different access
rights for the document.
Another feature is to decrypt PDF documents which are encrypted using standard security or public
security. The decrypting process needs the user to authenticate (See Authentication).

Licenses
PdfCrypter comes with three license types.
Demo version which provides full function of the professional version, with the restriction of an annotation
added to each page. The annotation shows a hint the document is processed with PdfCrypter.
Standard version provides standard security protection.
Professional version provides standard security and public security protection.

Authentication
Decrypting a PDF document needs the user to authenticate. For documents protected with standard
security a password is needed and an OnPassword event is fired. An application using PdfCrypter can
define an event handler to prompt for password or return a password from password list. The Event is
fired as long as the password is not correct or cancelled (See TPdfCrypter.OnPassword for details). If no
OnPassword handler is defined a default dialog appears prompting for a password. For documents
protected with public security access to the recipients certificate is necessary. The certificate must be on
the local system (where PdfCrypter runs) and must contain the private key. As PdfCrypter accesses the
private key, a windows dialog may appear asking the user to allow access or prompting for a password, if
the user has a password protected private key.

Class TPdfCrypter

Methods
constructor Create(AOwner: TComponent)

Description
Create a PdfCrypter object

Input
AOwner: Owner component

destructor Destroy;

Description
Free PdfCrypter object

procedure Connect;

Description
Connect to PdfCrypter COM Server.

Condition
PdfCrypter COM Server must be registered on local machine using regsvr32.exe.

procedure OpenDocument(const Filename: WideString; out Success: WordBool)

Description
open a PDF document for further processing with PdfCrypter.

Input
Filename: name of PDF file.

Output
Success : true, if PDF file could be open.

procedure CloseDocument

Description
Close PDF document.

Condition
Document must be open.

procedure IsDocumentOpen(out IsOpen: WordBool)

Description
Test, if a PDF document is opened with PdfCrypter.

Output
IsOpen: true, if document is open.

procedure SaveDocumentAs(const Filename: WideString)

Description
Save PDF document to file.

Input
Filename: name of target PDF file.

Condition
Document must be open. Filename must be different from filename used in OpenDocument.

procedure SaveDocument

Description
Save PDF document

procedure GetDocumentVersion(out MajorVersion: SYSINT;
 out MinorVersion: SYSINT)

Description
Get PDF document version.

Output
MajorVersion: major PDF version number
MinorVersion: minor PDF version number

Condition
Document must be open.

procedure GetDocumentInfo(out Title: PChar; out Producer: PChar;
 out Author: PChar; out Success: WordBool)

Description
Get PDF document information.

Output
Title: Document title
Producer: Application created the PDF document
Author: Author of document
Success: for Unencrypted Documents always true, else true, if authentication was successful.

Condition
Document must be open. SecurityInfo must not be crpUnknown.

Remark
GetDocumentInfo reads part of the PDF Info dictionary, which may be encrypted. In this case
authentication is needed (See Authentication). Data of Title, Producer and Author is only valid, when
Success is true.

procedure GetStandardSecurityInfo(out EncryptMetadata: WordBool;
 out CryptAlgorithm: CrpCryptAlgorithm;

 out KeyLength: SYSINT;
 out Permissions: LongWord)

Description
Get security information for PDF document encryted with standard security.

Output
EncryptMetadata: true, if PDF metadata is encrypted
CryptAlgorithm: algorithm used for encryption. If PDF document uses crypt filters, the algorithm used for
the default stream filter is returned.
KeyLength: Length of encryption key in bits. If PDF document uses crypt filters, the key length for default
stream filter is returned.
Permissions: User Access rights for the document (See Permissions for description)

Condition
Document must be open. The value of SecurityInfo property must be crpStandard else information is
invalid.

procedure GetPublicSecurityInfo(out CryptAlgorithm: CrpCryptAlgorithm;
 out KeyLength: SYSINT;
 out EncryptMetadata: WordBool;
 out ARecipients: IRecipients)

Description
Get security information for PDF document encrypted with public security.

Output
CryptAlgorithm: Algorithm used for encryption. If PDF document uses crypt filters, the algorithm used for
default stream filter is returned.
KeyLength: Length of encryption key in bits. If PDF document uses cryptfilters, the key length for default
stream filter is returned.
EncryptMetadata: true, if PDF metadata is encrypted
ARecipients: collection of recipient data returned as IRecipients interface.

Condition
Document must be open. The value of SecurityInfo property must be crpPublicKey else information is
invalid.

procedure GetBestEncryptionMethod(
 out EncryptionMethod: CrpEncryptionMethod)

Description
Call this to get best (highest) encryption method can be applied to current PDF document, depending on
PDF document version.

Output
EncryptionMethod: highest Encryption method can be used with PDF document.

Condition
Document must be open.

procedure AddStandardSecurity(const UserPassword: WideString;
 const OwnerPassword: WideString;
 Permissions: LongWord;
 EncryptMetadata: WordBool;
 EncryptionMethod: CrpEncryptionMethod)

Description
Apply Standard Security (password protection) to PDF document. See Remark 2.

Input
UserPassword: Password needed to open PDF document for reading.
OwnerPassword: Password needed to change permissions.
Permissions: Permissions for those gained document access with UserPassword. See Remark 1.
EncryptMetadata: true to Encrypt documents metadata or false to leave unencrypted. See Remark 3.
EncryptionMethod: Encryption method

Condition
Document must be open. EncryptionMethod must not be crmDocumentCompatibly with a PDF 1.0
Document.

procedure AddPublicSecurity(const ARecipients: IRecipients;
 EncryptionMethod: CrpEncryptionMethod;
 EncryptMetadata: WordBool)

Description
Apply Public Security (certificate protection) to PDF document. See Remark 2.

Condition
Document must be open. Apply only to PDF documents with version of at least 1.4.

procedure RemoveSecurity

Description
Remove Security from PDF document. See Remark 2.

Condition
Document must be open. SecurityType must not be not crpUnknown.

procedure GenerateCertificate(CertificateData: OleVariant;
 out X509Certificate: OleVariant)

Description
Generates a self signed X.509 Certificate

Input
CertificateData A ASN.1 structure containing parameters to generate a X.509 certificate. See below.

Output
X509Certificate ASN.1 structure of a X.509 certificate (can be stored as .cer file)

ASN.1 structure for CertificateData
CertificateData ::= Sequence {
 Version INTEGER,
 Algorithm INTEGER,
 KeyLength INTEGER,
 ValidFrom Datetime (UCT),
 ValidTo Datetime (UCT),
 SerialNumber INTEGER,
 Issuer RDNSequence (see X.501),
 Subject RDNSequence
}
Version: Version number of this structure must be 1.
Algorithm: Signature Algorithm identifier must be a Value of CrpCertAlgorithm.
KeyLength: The length of Encryption key in Dwords.
ValidFrom, ValidTo: Validity period of the certificate.
SerialNumber: serial number of the certificate.
Issuer: Exhibitor properties.
Subject: Applicant properties.

procedure SetLicenseInfo(const Username: WideString;
 const LicenseKey: WideString)

Description
Set License information.

Input
Username: user name
LicenseKey: Serial number

function Version: BStr;

Description
Get the version of the COM server library.

function GetHashValue: BStr;

Description
Get the hash value for the library file. The hash is built with SHA256 algorithm.
The hash value result is in hexadecimal form.

Remark 1
Permissions are a combination (+) of values of CrpSecurityPermissions. Some Permissions need at least
PDF Version 1.4 see CrpSecurityPermissions. If you use these permissions with a PDF document of lower
version the version number is set to 1.4. If EncryptionMethod is crmDocumentCompatibly and PDF

version is lower 1.4 then permissions marked with PDF 1.4 are ignored.

Remark 2
Adding security to PDF document or removing security from PDF document does not affect the document
until you call SaveDocument or SaveDocumentAs. This may lead to inconsistencies. For example you
remove security from a encrypted document and call GetDocumentInfo, which accesses encrypted
information, you may asked for a password to decrypt information. An application using PdfCrypter must
handle these inconsistencies itself. To Avoid these problems call SaveDocument(As) each time you are
changing security and reopen the new document with OpenDocument.

Remark3
Setting EncryptMetadata to false to leave metadata unencrypted is only possible with PDF Version 1.5 or
greater. If EncryptionMethod is crmDocumentCompatibly and PDF documents version number is lower
then 1.5 then a value of false for EncryptMetadata is ignored. For other values of EncryptionMethod the
PDF version number is set to 1.5 if the current document contains a lower version number.

Properties
property SecurityInfo: CrpSecurityType readonly

Description
Kind of Security used to encrypt PDF document (See CrpSecurityType).

Condition
Document must be open.

property Version: WideString readonly

Description
Version number of PdfCrypter COM Interface.

property LicenseType: CrpLicenseType readonly

Description
LicenseType of PdfCrypter (See CrpLicenseType)

property Recipients: IRecipients readonly

Description
Creates a new Recipient Collection accessible through IRecipients interface.

property DocumentPageCount: Integer readonly

Description
Number of pages in PDF Document.

Condition
Document must be open.

property DaysLeft: Integer readonly

Description
The number of days left for using PdfCrypter trial version.

Condition
Available after registration. Information loaded with initialization.

Events
property OnProgressTotal : procedure(Sender : TObject; Percent: SYSINT;
 out Abort: WordBool)

Description
Fired by some methods to show progress of the method call.

Input
Sender: PdfCrypter object (TPdfCrypter)
Percent: Progress in percent

Output
Abort: Set to true, to cancel operation else this can be leaved unchanged.

Remark
Fired by SaveDocument, SaveDocumentAs, OpenDocument.

property OnProgressDetail : procedure(Sender : TObject; Percent: SYSINT;
 out Abort: WordBool)

Description
Fired by some methods to show progress of parts of a method called.

Input
Sender: PdfCrypter Object (TPdfCrypter)
Percent: Progress in percent.

Output
Abort: Set to true, to cancel operation else this can be left unchanged.

Remark
Fired by SaveDocument, SaveDocumentAs, OpenDocument.

property OnStatusTotal : procedure(Sender : TObject; Text: OleVariant)

Description
Message of action performed currently.

Input
Sender: PdfCrypter object (TPdfCrypter)
Text: Status message (string)

Remark
Fired by SaveDocument, SaveDocumentAs, OpenDocument.

property OnStatusDetail : procedure(Sender : TObject; Text: OleVariant)

Description
Message containing detailed information while processing a method call.

Input
Sender: PdfCrypter object (TPdfCrypter)
Text: Status message (string)

Remark
Fired by SaveDocument, SaveDocumentAs, OpenDocument.

property OnError : procedure(Sender : TObject; Text: OleVariant;
 var Handled : WordBool)

Description
This event is fired, when an error occurs.

Input
Sender: PdfCrypter object (TPdfCrypter)
Text: Error message (string)

Output
Handled: Set to true in your own handler, else an Exception is raised.

property OnPassword : procedure(Sender : TObject; out Password: OleVariant;
 out Cancel: WordBool;
 var OwnHandler: WordBool)

Description
This event is fired, when a PDF document protected with standard security needs to be decrypted.

Input
Sender: PdfCrypter object (TPdfCrypter)

Output
Password: Password (string)
Cancel: Set to true, to cancel operation.
OwnHandler: Set to true, if OnPassword does handle this event, else leave unchanged.

Remark
If OnPassword is not assigned the value of OwnHandler is false. In this case a default dialog appears
prompting for password. Fired By SaveDocument, SaveDocumentAs, RemoveSecurity.

IRecipients
Collection of IRecipient items.

Methods
procedure Remove(Index: SYSINT)

Description
Remove i-th Recipient item from collection.

Input
Index: Index of item to remove.

Condition
Index must be in range of 1 to value of Count property.

procedure Clear

Description
Clear Collection.

Properties
property Count: Integer readonly

Description
Number of IRecipient items in collection.

property Item[Index: SYSINT]: IRecipient readonly

Description
Get i-th Item of collection.

Input
Index: Index of item.

Condition
Index must be in range of 1 to value of Count property.

property Add: IRecipient readonly

IRecipient
This interface is used to access the collection items of the IRecipients interface. This interface is used for
two different purposes. If creating a PDF document encrypted with public security you add Recipients to
the IRecipients collection. In this case only the Certificate and the Permissions properties need to be set. If
you get information about a PDF document encrypted with public security, only the SubjectData property
of IRecipient is filled.

Properties
property Certificate: OleVariant read/write

Description
Certificate is a string containing the DER encoded ASN.1 structure of a X.509 Certificate.

property Permissions: LongWord read/write

Description
Permissions are a combination (+) of CrpSecurityPermissions values.

property SubjectData: OleVariant read/write

Description
SubjectData is a string containing information on the applicant of the certificate stored as ASN.1 structure
of type IssuerAndSerialNumber specified in RFC 2315.

CrpSecurityType
This type lists the possible security types used with PDF documents:

crpNone: Document is not encrypted
crpStandard : Document is protected with standard security
crpPublicKey: Document is protected with public security
crpUnknown: Document is protected with some security no supported by PdfCrypter

CrpCryptAlgorithm
This type lists encryption algorithms used in PDF documents
craCR4: RC4 Algorithm (propietary algorithm of RSA Security)
craAES: AES Algorithm (Advanced Encryption Standard)

CrpEncryptionMethod
This type lists the encryption methods can be used to encrypt a PDF document with PdfCrypter and the
PDF version that is at least needed.
crmNone: No Encryption possible (PDF 1.0)
crmRc4_40: RC4 Algorithm with 40-bit key. (PDF 1.1)
crmRc4_128: RC4 Algorithm with 128-bit key. (PDF 1.4)

crmAES_128: AES Algorithm with 128-bit key. (PDF 1.6)
crmDocumentCompatibly: One of the above depending on version of current PDF document loaded with
OpenDocument.

CrpCertAlgorithm
This type list the signature algorithms used in certificate generation
ca_SHA1_RSA: RSA Encryption with SHA-1 finger print.

CrpSecurityPermissions
This type lists the access rights can be applied to a PDF document
crsPrint: print document.
crsModifyContent:
crsExtractText
crsModifiyAnnotations

The following are available with PDF version 1.4 or higher
crsFillFormFields
crsExtractTextAndGraphic
crsAssembleDocument
crsPrintHighQuality

CrpLicenseType
This type lists the possible license modes of PdfCrypter
crlUnregistered: Unregistered (Demo version).
crlStandard: Standard version.
crlProfessional: Professional version.

Example
Adding public security to a PDF document.
procedure Example;
var
 Recipients: IRecipients;
 Recipient : IRecipient;
 PdfCrypter : TPdfCrypter;
 IsOpen : Wordbool;
 Certificate : string;
 Permissions : LongWord;
begin
 // create crypter object
 PdfCrypter := TPdfCrypter.Create(nil);
 // connect to com server
 PdfCrypter.Connect;
 // open PDF document to encrypt
 PdfCrypter.OpenDocument(’C:\Test.pdf’, IsOpen);
 if not IsOpen then
 Exit;
 // get a recipient collection;
 Recipients := PdfCrypter.Recipients;
 // add one recipient to collection
 Recipient := Recipients.Add;
 // load X.509 certificate from a file or from a certificate storage

 Certificate := ...
 // Set permissions for recipient
 Permissions := crsPrint + crsExtractText;
 Recipient.Certificate := Certificate;
 Recipient.Permissions := Permissions;
 // add certificate protection, encrypt with AES 128 bit
 // do not encrypt metadata
 PdfCrypter.AddPublicSecurity(Recipients, crmAES_128, false);
 // save encrypted document to a new! file.
 PdfCrypter.SaveDocumentAs(’C:\Test2.pdf’);
 // free crypter object
 PdfCrypter.Free;
 // recipients collection is freed automatically
 // when leaving the procedure.
end;

